More from Munaco.

AS-568 Standard 0-Rings Quick Reference Chart

General Applications

Munaco's 0 -Rings are available in a variety of materials. The below are the most common basic materials, each in a range of optional Durometer (Shore A) Hardnesses. Other materials are available upon request.

Buna-N/Nitrile: Buna N/Nitrile rubber is a copolymer of butadiene and acrylonitrile. You will find compounds that are ideally suited for oil and fuel resistant applications of all types

Ethylene-Propylene: In the Ethylene-Propylene family, you will find compounds that are used extensively for outdoor, weather resistant uses, water appliances. The first choice for low torque drive belts.

Silicone: In the Silicone family, you will find compounds that are excellent as static seals in extreme temperature conditions.

Neoprene: ${ }^{\circledR}$ In the Neoprene family, you will find compounds which are the superior sealing materials for the refrigeration industry featuring resistance to ammonia and Freon. ${ }^{\circledR}$

Fluorocarbon: In the

Fluorocarbon family, you will find compounds that make up the preferred seals for aircraft engines, automotive fuel handling systems, and hard vacuum service.

Fluorosilicone: In the Fluorosilicone family, there are compounds that are unparalleled for aerospace fuel systems and auto fuel emission control systems.

Our materials are compounded under stringent quality control for uniformity of physical properties. We can provide materials to meet or exceed Government, Military, Space Program, Automotive, F.D.A., Industrial and Commercial specifications as well.

Materials	Durometer (Shore A)	Temperature Range Dry Heat Only	Description
Buna-N/Nitrile (NBR)	40 thru 90	$\begin{aligned} & -40 \text { to }+257^{\circ} \mathrm{F} \\ & -40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Nitrile combines excellent resistance to petroleum-based oils and fuels, silicone greases, hydraulic fluids, water and alcohols, with a good balance of such desirable working properties as low compression set, high tensile strength, and high abrasion resistance.
Ethylene-Propylene (EPM/EPDM)	40 thru 90	$\begin{aligned} & -40 \text { to }+275^{\circ} \mathrm{F} \\ & -40 \text { to }+135^{\circ} \mathrm{C} \end{aligned}$	EPM/EPDM is also highly recommended for effective resistance to steam (to 400°), hot water, silicone oils and greases, dilute acids and alkalies, alcohols and automotive brake fluids. Properly compounded, Ethylene Propylene can provide extended temperature range of $-76^{\circ} \mathrm{F}$ to $+350^{\circ} \mathrm{F}$.
Silicone (Mq; PMq; VMq; PVMq)	25 thru 80	$\begin{aligned} & -85 \text { to }+400^{\circ} \mathrm{F} \\ & -65 \text { to }+230^{\circ} \mathrm{C} \end{aligned}$	Especially resistant to high, dry heat, in primarily static applications. Silicones are fungus resistant, odorless, tasteless, non-toxic elastomers, possessing high resistance to the aging effects of both sunlight and ozone attack.
Neoprene ${ }^{\circledR}$ (Chloroprene) (CR)	40 thru 90	$\begin{aligned} & -40 \text { to }+250^{\circ} \mathrm{F} \\ & -40 \text { to }+121^{\circ} \mathrm{C} \end{aligned}$	An oil-resistant substitute for Natural Rubber, Neoprene features moderate resistance to petroleum oils; good resistance to ozone, sunlight and oxygen aging; relatively low compression set; good resilience; reasonable cost; and high resistance to attack by Freon ${ }^{\circledR}$ and Ammonia.
Fluorocarbon (Viton ${ }^{\text {® }}$) (FKM)	55 thru 95	$\begin{aligned} & -13 \text { to }+446^{\circ} \mathrm{F} \\ & -25 \text { to }+230^{\circ} \mathrm{C} \end{aligned}$	Combining high temperature toughness with wide chemical agent compatibility, Fluorocarbon compounds feature excellent resistance to petroleum products and solvents, with good high temperature compression set characteristics.

Simplified Reference, Easy to Order: The information you need for standard 0Ring sized is listed by ascending inside diameter (I.D.) in fractional and decimal sizes along with the Standard AS-568* Uniform Numbering System .

Choice of Materials: There are a wide variety of compounds and options of Durometer hardness to satisfy practically any service condition. Check with our sales staff for compatibility and other material needs to best suit the application.

A standard 0-Ring size is defined by inside diameter and width (crosssection) and is listed in both fractional and decimal dimensions with tolerances.

We highly recommend that in all cases, samples of a specific size and compound should be tested in a controlled, simulated test environment prior to use in production.

How to Determine an O-Ring Size:

Top View
Cross Section

Shrinkage Size Adjustment: Various O-Ring compounds exhibit different shrinkage rates during molding. The normal 0 -ring sizes herein shown are based upon a 70 Durometer Nitrile standard. For other 0 -ring materials, be sure to consult your Munaco Sales representative.

Gland Design Guidelines

O-Ring Gland Guidelines For Dynamic Seals

O-Ring Cross Section	Gland Depth	Squeeze		Diametrical Clearance Max.	Groove Width. $\pm .005$			Groove Radius	Eccetricity Max
		Inches	\%		No Backup Rings	One Backup Ring	Two Backup Rings		
. 040	.031/.033	.004/.012	11-28	. 004	. 063	-	-	.005-.008	. 002
. 050	.039/.041	.006/.014	13-26	. 004	. 073	-	-	.005-.008	. 002
. 060	. 0471.049	.008/.016	14-25	. 004	. 084	-	-	.005-.008	. 002
. 070	.055/.057	.010/.018	15-25	. 004	. 095	. 150	. 208	.005-.015	. 002
. 103	.0871.090	.010/.019	10-18	. 005	. 145	. 187	. 249	.005-.020	. 003
. 139	.119/.123	. 0121.024	9-17	. 006	. 185	. 222	. 301	.005-.030	. 004
. 210	.183/.188	. 0171.032	8.5-15	. 006	. 285	. 338	. 428	.005-.050	. 006
. 275	.234/.240	.029/.047	10.5-17	. 007	. 375	. 440	. 579	.005-.060	. 008

O-Ring Gland Guidelines For Static Seals

O-Ring Cross Section	Gland Depth		Squeeze				Diametrical Clearance Max.	Groove Width. $\pm .005$			Groove Radius	Eccentricity Max
			Radial $>$ O<		Axial $\begin{gathered}\text { ¢ } \\ \text { ¢ } \\ \uparrow\end{gathered}$			No	One	Two		
	Radial	Axial	Inches	\%	Inches	\%		Ring	Ring	Rings		
. 040	.027-. 030	.027-. 030	.007-. 016	19-37	.007-. 016	19-37	. 003	060	-	-	005-.008	002
. 050	.035-. 039	.034-.038	.008-.018	17-34	.009-. 019	19-36	. 004	. 075	-		005-.008	. 002
. 060	.042-.047	.042-.046	.010-. 021	18-33	.011-.021	19-33	. 004	. 090	-	-	.005-.008	. 002
. 070	. $050-.055$.049-. 054	.012-. 023	18-32	. 013 -. 024	19-33	. 004	105	150	208	005-.015	. 002
. 103	. $080-.086$.075-. 081	.014-. 026	14-25	.019-.031	19-29	. 005	146	182	244	005-.020	. 003
. 139	. $110-.116$.100-. 108	.019-. 033	14-23	. $027-.043$	20-30	. 006	195	217	296	005-.030	. 004
. 210	.170-. 176	.155-. 165	.029-.045	14-21	.040-.060	20-28	. 006	. 280	. 333	. 423	.005-.050	. 006
. 275	.225-. 235	.205-. 215	.034-. 056	13-20	. $054-.076$	20-27	. 007	. 350	. 435	. 574	.005-.060	. 008

	Nominal Reference			Actual Dimensions			Nominal Reference			Actual Dimensions	
	I.D.	O.D.	Width	I.D. Tol.	W. Tol.		I.D.	O.D.	Width	I.D. Tol.	W. Tol.
$\begin{aligned} & -001 \\ & -0011 / 2 \\ & -002 \\ & -003 \\ & -004 \end{aligned}$	$\begin{aligned} & 1 / 32 \\ & 1 / 16 \\ & 3 / 64 \\ & 1 / 16 \\ & 5 / 64 \end{aligned}$	$\begin{gathered} 3 / 32 \\ 1 / 8 \\ 9 / 64 \\ 3 / 16 \\ 13 / 64 \end{gathered}$	$\begin{aligned} & 1 / 32 \\ & 1 / 32 \\ & 3 / 64 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & .029 \pm .004 \\ & .070 \pm .004 \\ & .042 \pm .004 \\ & .056 \pm .004 \\ & .070 \pm .005 \end{aligned}$	$\begin{aligned} & .040 \pm .003 \\ & .040 \pm .003 \\ & .050 \pm .003 \\ & .060 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -146 \\ & -147 \\ & -148 \\ & -149 \\ & -150 \end{aligned}$	$\begin{gathered} 25 / 8 \\ 211 / 16 \\ 23 / 4 \\ 213 / 16 \\ 27 / 8 \end{gathered}$	$\begin{gathered} 213 / 16 \\ 27 / 8 \\ 215 / 16 \\ 3 \\ 31 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 2.612 \pm .020 \\ & 2.675 \pm .022 \\ & 2.737 \pm .022 \\ & 2.800 \pm .022 \\ & 2.862 \pm .022 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$
$\begin{aligned} & -005 \\ & -006 \\ & -007 \\ & -008 \\ & -009 \end{aligned}$	$\begin{aligned} & 3 / 32 \\ & 1 / 8 \\ & 5 / 32 \\ & 3 / 16 \\ & 7 / 32 \end{aligned}$	$\begin{aligned} & 7 / 32 \\ & 1 / 4 \\ & 9 / 32 \\ & 5 / 16 \\ & 11 / 32 \end{aligned}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & .101 \pm .005 \\ & .114 \pm .005 \\ & .145 \pm .005 \\ & .176 \pm .005 \\ & .208 \pm .005 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -151 \\ & -152 \\ & -153 \\ & -154 \\ & -155 \end{aligned}$	$\begin{gathered} 3 \\ 31 / 4 \\ 31 / 2 \\ 33 / 4 \\ 4 \end{gathered}$	$\begin{gathered} 33 / 16 \\ 37 / 16 \\ 311 / 16 \\ 315 / 16 \\ 43 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 2.987 \pm .024 \\ & 3.237 \pm .024 \\ & 3.487 \pm .024 \\ & 3.737 \pm .028 \\ & 3.987 \pm .028 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$
$\begin{aligned} & -010 \\ & -011 \\ & -012 \\ & -013 \\ & -014 \end{aligned}$	$\begin{gathered} 1 / 4 \\ 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 2 \end{gathered}$	$\begin{gathered} 3 / 8 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \\ 5 / 8 \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & .239 \pm .005 \\ & .301 \pm .005 \\ & .364 \pm .005 \\ & .426 \pm .005 \\ & .489 \pm .005 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -156 \\ & -157 \\ & -158 \\ & -159 \\ & -160 \end{aligned}$	$\begin{gathered} 41 / 4 \\ 41 / 2 \\ 43 / 4 \\ 5 \\ 51 / 4 \end{gathered}$	$\begin{gathered} 47 / 16 \\ 411 / 16 \\ 415 / 16 \\ 53 / 16 \\ 57 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 4.237 \pm .030 \\ & 4.487 \pm .030 \\ & 4.737 \pm .030 \\ & 4.987 \pm .035 \\ & 5.237 \pm .035 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$
$\begin{aligned} & -015 \\ & -016 \\ & -017 \\ & -018 \\ & -019 \end{aligned}$	$\begin{gathered} 9 / 16 \\ 5 / 8 \\ 11 / 16 \\ 3 / 4 \\ 13 / 16 \end{gathered}$	$\begin{gathered} 11 / 16 \\ 3 / 4 \\ 13 / 16 \\ 7 / 8 \\ 15 / 16 \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & .551 \pm .007 \\ & .614 \pm .009 \\ & .676 \pm .009 \\ & .739 \pm .009 \\ & .801 \pm .009 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -161 \\ & -162 \\ & -163 \\ & -164 \\ & -165 \end{aligned}$	$\begin{gathered} 51 / 2 \\ 53 / 4 \\ 6 \\ 61 / 4 \\ 61 / 2 \end{gathered}$	$\begin{gathered} 511 / 16 \\ 515 / 16 \\ 63 / 16 \\ 67 / 16 \\ 611 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 5.487 \pm .035 \\ & 5.737 \pm .035 \\ & 5.987 \pm .035 \\ & 6.237 \pm .040 \\ & 6.487 \pm .040 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$
$\begin{aligned} & -020 \\ & -021 \\ & -022 \\ & -023 \\ & -024 \end{aligned}$	$\begin{gathered} 7 / 8 \\ 15 / 16 \\ 1 \\ 11 / 16 \\ 11 / 8 \end{gathered}$	$\begin{gathered} 1 \\ 11 / 16 \\ 11 / 8 \\ 13 / 16 \\ 11 / 4 \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{array}{r} .864 \pm .009 \\ .926 \pm .009 \\ .989 \pm .010 \\ 1.051 \pm .010 \\ 1.114 \pm .010 \end{array}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -166 \\ & -167 \\ & -168 \\ & -169 \\ & -170 \end{aligned}$	$\begin{gathered} 63 / 4 \\ 7 \\ 71 / 4 \\ 71 / 2 \\ 73 / 4 \end{gathered}$	$\begin{aligned} & 615 / 16 \\ & 73 / 16 \\ & 77 / 16 \\ & 711 / 16 \\ & 715 / 16 \end{aligned}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 6.737 \pm .040 \\ & 6.987 \pm .040 \\ & 7.237 \pm .045 \\ & 7.487 \pm .045 \\ & 7.737 \pm .045 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$
$\begin{aligned} & -025 \\ & -026 \\ & -027 \\ & -028 \\ & -029 \end{aligned}$	$\begin{gathered} 13 / 16 \\ 11 / 4 \\ 15 / 16 \\ 13 / 8 \\ 11 / 2 \end{gathered}$	$\begin{gathered} 15 / 16 \\ 13 / 8 \\ 17 / 16 \\ 11 / 2 \\ 15 / 8 \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & 1.176 \pm .011 \\ & 1.239 \pm .011 \\ & 1.301 \pm .011 \\ & 1.364 \pm .013 \\ & 1.489 \pm .013 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -171 \\ & -172 \\ & -173 \\ & -174 \\ & -175 \end{aligned}$	$\begin{gathered} 8 \\ 81 / 4 \\ 81 / 2 \\ 83 / 4 \\ 9 \end{gathered}$	$\begin{gathered} 83 / 16 \\ 87 / 16 \\ 811 / 16 \\ 815 / 16 \\ 93 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 7.987 \pm .045 \\ & 8.237 \pm .050 \\ & 8.487 \pm .050 \\ & 8.737 \pm .050 \\ & 8.987 \pm .050 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$
$\begin{aligned} & -030 \\ & -031 \\ & -032 \\ & -033 \\ & -034 \end{aligned}$	$\begin{gathered} 15 / 8 \\ 13 / 4 \\ 17 / 8 \\ 2 \\ 21 / 8 \end{gathered}$	$\begin{gathered} 13 / 4 \\ 17 / 8 \\ 2 \\ 21 / 8 \\ 21 / 4 \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & 1.614 \pm .013 \\ & 1.739 \pm .015 \\ & 1.864 \pm .015 \\ & 1.989 \pm .018 \\ & 2.114 \pm .018 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -176 \\ & -177 \\ & -178 \\ & -201 \\ & -202 \end{aligned}$	$\begin{aligned} & 91 / 4 \\ & 91 / 2 \\ & 93 / 4 \\ & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{gathered} 97 / 16 \\ 911 / 16 \\ 915 / 16 \\ 7 / 16 \\ 1 / 2 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{array}{r} 9.237 \pm .055 \\ 9.487 \pm .055 \\ 9.737 \pm .055 \\ .171 \pm .005 \\ .234 \pm .005 \end{array}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \\ & .103 \pm .003 \\ & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -035 \\ & -036 \\ & -037 \\ & -038 \\ & -039 \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 23 / 8 \\ & 21 / 2 \\ & 25 / 8 \\ & 23 / 4 \end{aligned}$	$\begin{aligned} & 23 / 8 \\ & 21 / 2 \\ & 25 / 8 \\ & 23 / 4 \\ & 27 / 8 \end{aligned}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & 2.239 \pm .018 \\ & 2.364 \pm .018 \\ & 2.489 \pm .018 \\ & 2.614 \pm .020 \\ & 2.739 \pm .020 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -203 \\ & -204 \\ & -205 \\ & -206 \\ & -207 \end{aligned}$	$\begin{gathered} 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \end{gathered}$	$\begin{gathered} 9 / 16 \\ 5 / 8 \\ 11 / 16 \\ 3 / 4 \\ 13 / 16 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & .296 \pm .005 \\ & .359 \pm .005 \\ & .421 \pm .005 \\ & .484 \pm .005 \\ & .546 \pm .007 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -040 \\ & -041 \\ & -042 \\ & -043 \\ & -044 \end{aligned}$	$\begin{gathered} 27 / 8 \\ 3 \\ 31 / 4 \\ 31 / 2 \\ 33 / 4 \end{gathered}$	$\begin{gathered} 3 \\ 31 / 8 \\ 33 / 8 \\ 35 / 8 \\ 37 / 8 \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & 2.864 \pm .020 \\ & 2.989 \pm .024 \\ & 3.239 \pm .024 \\ & 3.489 \pm .024 \\ & 3.739 \pm .027 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -208 \\ & -209 \\ & -210 \\ & -211 \\ & -212 \end{aligned}$	$\begin{gathered} 5 / 8 \\ 11 / 16 \\ 3 / 4 \\ 13 / 16 \\ 7 / 8 \end{gathered}$	$\begin{gathered} 7 / 8 \\ 15 / 16 \\ 1 \\ 11 / 16 \\ 11 / 8 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & .609 \pm .009 \\ & .671 \pm .009 \\ & .734 \pm .010 \\ & .796 \pm .010 \\ & .859 \pm .010 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -045 \\ & -046 \\ & -047 \\ & -048 \\ & -049 \end{aligned}$	$\begin{gathered} 4 \\ 41 / 4 \\ 41 / 2 \\ 43 / 4 \\ 5 \end{gathered}$	$\begin{aligned} & 41 / 8 \\ & 43 / 8 \\ & 45 / 8 \\ & 47 / 8 \\ & 51 / 8 \end{aligned}$	$\begin{aligned} & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & 3.989 \pm .027 \\ & 4.239 \pm .030 \\ & 4.489 \pm .030 \\ & 4.739 \pm .030 \\ & 4.989 \pm .037 \end{aligned}$	$\begin{aligned} & .070 \pm .003 \\ & .070 \pm .003 \end{aligned}$	$\begin{aligned} & -213 \\ & -214 \\ & -215 \\ & -216 \\ & -217 \end{aligned}$	$\begin{gathered} 15 / 16 \\ 1 \\ 11 / 16 \\ 11 / 8 \\ 13 / 16 \end{gathered}$	$\begin{gathered} 13 / 16 \\ 11 / 4 \\ 15 / 16 \\ 13 / 8 \\ 17 / 16 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{array}{r} .921 \pm .010 \\ .984 \pm .010 \\ 1.046 \pm .010 \\ 1.109 \pm .012 \\ 1.171 \pm .012 \end{array}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -050 \\ & -102 \\ & -103 \\ & -104 \\ & -105 \end{aligned}$	$\begin{aligned} & 51 / 4 \\ & 1 / 16 \\ & 3 / 32 \\ & 1 / 8 \\ & 5 / 32 \end{aligned}$	$\begin{gathered} 53 / 8 \\ 1 / 4 \\ 9 / 32 \\ 5 / 16 \\ 11 / 32 \end{gathered}$	$\begin{aligned} & 1 / 16 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{array}{r} 5.239 \pm .037 \\ .049 \pm .005 \\ .081 \pm .005 \\ .112 \pm .005 \\ .143 \pm .005 \end{array}$	$\begin{aligned} & .070 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -218 \\ & -219 \\ & -220 \\ & -221 \\ & -222 \end{aligned}$	$\begin{gathered} 11 / 4 \\ 15 / 16 \\ 13 / 8 \\ 17 / 16 \\ 11 / 2 \end{gathered}$	$\begin{gathered} 11 / 2 \\ 19 / 16 \\ 15 / 8 \\ 111 / 16 \\ 13 / 4 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 1.234 \pm .012 \\ & 1.296 \pm .012 \\ & 1.359 \pm .012 \\ & 1.421 \pm .012 \\ & 1.484 \pm .015 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -106 \\ & -107 \\ & -108 \\ & -109 \\ & -110 \end{aligned}$	$\begin{gathered} 3 / 16 \\ 7 / 32 \\ 1 / 4 \\ 5 / 16 \\ 3 / 8 \end{gathered}$	$\begin{gathered} 3 / 8 \\ 13 / 32 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & .174 \pm .005 \\ & .206 \pm .005 \\ & .237 \pm .005 \\ & .299 \pm .005 \\ & .362 \pm .005 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -223 \\ & -224 \\ & -225 \\ & -226 \\ & -227 \end{aligned}$	$\begin{gathered} 15 / 8 \\ 13 / 4 \\ 17 / 8 \\ 2 \\ 21 / 8 \end{gathered}$	$\begin{gathered} 17 / 8 \\ 2 \\ 21 / 8 \\ 21 / 4 \\ 23 / 8 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 1.609 \pm .015 \\ & 1.734 \pm .015 \\ & 1.859 \pm .018 \\ & 1.984 \pm .018 \\ & 2.109 \pm .018 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -111 \\ & -112 \\ & -113 \\ & -114 \\ & -115 \end{aligned}$	$\begin{gathered} 7 / 16 \\ 1 / 2 \\ 9 / 16 \\ 5 / 8 \\ 11 / 16 \end{gathered}$	$\begin{gathered} 5 / 8 \\ 11 / 16 \\ 3 / 4 \\ 13 / 16 \\ 7 / 8 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & .424 \pm .005 \\ & .487 \pm .005 \\ & .549 \pm .007 \\ & .612 \pm .009 \\ & .674 \pm .009 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -228 \\ & -229 \\ & -230 \\ & -231 \\ & -232 \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 23 / 8 \\ & 21 / 2 \\ & 25 / 8 \\ & 23 / 4 \end{aligned}$	$\begin{gathered} 21 / 2 \\ 25 / 8 \\ 23 / 4 \\ 27 / 8 \\ 3 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 2.234 \pm .020 \\ & 2.359 \pm .020 \\ & 2.484 \pm .020 \\ & 2.609 \pm .020 \\ & 2.734 \pm .024 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -116 \\ & -117 \\ & -118 \\ & -119 \\ & -120 \end{aligned}$	$\begin{gathered} 3 / 4 \\ 13 / 16 \\ 7 / 8 \\ 15 / 16 \\ 1 \end{gathered}$	$\begin{gathered} 15 / 16 \\ 1 \\ 11 / 16 \\ 11 / 8 \\ 13 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & .737 \pm .009 \\ & .799 \pm .010 \\ & .86 \pm .010 \\ & .924 \pm .010 \\ & .987 \pm .010 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -233 \\ & -234 \\ & -235 \\ & -236 \\ & -237 \end{aligned}$	$\begin{gathered} 27 / 8 \\ 3 \\ 31 / 8 \\ 31 / 4 \\ 33 / 8 \end{gathered}$	$\begin{aligned} & 31 / 8 \\ & 31 / 4 \\ & 33 / 8 \\ & 31 / 2 \\ & 35 / 8 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 2.859 \pm .024 \\ & 2.984 \pm .024 \\ & 3.109 \pm .024 \\ & 3.234 \pm .024 \\ & 3.359 \pm .024 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -121 \\ & -122 \\ & -123 \\ & -124 \\ & -125 \end{aligned}$	$\begin{gathered} 11 / 16 \\ 11 / 8 \\ 13 / 16 \\ 11 / 4 \\ 15 / 16 \end{gathered}$	$\begin{gathered} 11 / 4 \\ 15 / 16 \\ 13 / 8 \\ 17 / 16 \\ 11 / 2 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 1.049 \pm .010 \\ & 1.112 \pm .010 \\ & 1.174 \pm .012 \\ & 1.237 \pm .012 \\ & 1.299 \pm .012 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -238 \\ & -239 \\ & -240 \\ & -241 \\ & -242 \end{aligned}$	$\begin{gathered} 31 / 2 \\ 35 / 8 \\ 33 / 4 \\ 37 / 8 \\ 4 \end{gathered}$	$\begin{gathered} 33 / 4 \\ 37 / 8 \\ 4 \\ 41 / 8 \\ 41 / 4 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 3.484 \pm .024 \\ & 3.609 \pm .028 \\ & 3.734 \pm .028 \\ & 3.859 \pm .028 \\ & 3.984 \pm .028 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -126 \\ & -127 \\ & -128 \\ & -129 \\ & -130 \end{aligned}$	$\begin{gathered} 13 / 8 \\ 17 / 16 \\ 11 / 2 \\ 19 / 16 \\ 15 / 8 \end{gathered}$	$\begin{gathered} 19 / 16 \\ 15 / 8 \\ 111 / 16 \\ 13 / 4 \\ 113 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 1.362 \pm .012 \\ & 1.424 \pm .012 \\ & 1.487 \pm .012 \\ & 1.549 \pm .015 \\ & 1.612 \pm .015 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -243 \\ & -244 \\ & -245 \\ & -246 \\ & -247 \end{aligned}$	$\begin{aligned} & 41 / 8 \\ & 41 / 4 \\ & 43 / 8 \\ & 41 / 2 \\ & 45 / 8 \end{aligned}$	$\begin{aligned} & 43 / 8 \\ & 41 / 2 \\ & 45 / 8 \\ & 43 / 4 \\ & 4378 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 4.109 \pm .028 \\ & 4.234 \pm .030 \\ & 4.359 \pm .030 \\ & 4.484 \pm .030 \\ & 4.609 \pm .030 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -131 \\ & -132 \\ & -133 \\ & -134 \\ & -135 \end{aligned}$	$\begin{gathered} 111 / 16 \\ 13 / 4 \\ 113 / 16 \\ 17 / 8 \\ 115 / 16 \end{gathered}$	$\begin{gathered} 17 / 8 \\ 115 / 16 \\ 2 \\ 21 / 16 \\ 21 / 8 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 1.674 \pm .015 \\ & 1.737 \pm .015 \\ & 1.799 \pm .015 \\ & 1.862 \pm .015 \\ & 1.925 \pm .017 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -248 \\ & -249 \\ & -250 \\ & -251 \\ & -252 \end{aligned}$	$\begin{gathered} 43 / 4 \\ 47 / 8 \\ 5 \\ 51 / 8 \\ 51 / 4 \end{gathered}$	$\begin{gathered} 5 \\ 51 / 8 \\ 51 / 4 \\ 53 / 8 \\ 51 / 2 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 4.734 \pm .030 \\ & 4.859 \pm .035 \\ & 4.984 \pm .035 \\ & 5.109 \pm .035 \\ & 5.234 \pm .035 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -136 \\ & -137 \\ & -138 \\ & -139 \\ & -140 \end{aligned}$	$\begin{gathered} 2 \\ 21 / 16 \\ 21 / 8 \\ 23 / 16 \\ 21 / 4 \end{gathered}$	$\begin{gathered} 23 / 16 \\ 21 / 4 \\ 25 / 16 \\ 23 / 8 \\ 27 / 16 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 1.987 \pm .017 \\ & 2.050 \pm .017 \\ & 2.112 \pm .017 \\ & 2.175 \pm .017 \\ & 2.237 \pm .017 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & .103 \pm .003 \end{aligned}$	$\begin{aligned} & -253 \\ & -254 \\ & -255 \\ & -256 \\ & -257 \end{aligned}$	$53 / 8$ $51 / 2$ 55/8 $53 / 4$ $57 / 8$	$\begin{gathered} 55 / 8 \\ 53 / 4 \\ 57 / 8 \\ 6 \\ 61 / 8 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 5.359 \pm .035 \\ & 5.484 \pm .035 \\ & 5.609 \pm .035 \\ & 5.734 \pm .035 \\ & 5.859 \pm .035 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -141 \\ & -142 \\ & -143 \\ & -144 \\ & -145 \end{aligned}$	$\begin{gathered} 25 / 16 \\ 23 / 8 \\ 27 / 16 \\ 21 / 2 \\ 29 / 16 \\ \hline \end{gathered}$	$\begin{gathered} 21 / 2 \\ 29 / 16 \\ 25 / 8 \\ 211 / 16 \\ 23 / 4 \end{gathered}$	$\begin{aligned} & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \\ & 3 / 32 \end{aligned}$	$\begin{aligned} & 2.300 \pm .020 \\ & 2.362 \pm .020 \\ & 2.425 \pm .020 \\ & 2.487 \pm .020 \\ & 2.550 \pm .020 \end{aligned}$	$\begin{aligned} & .103 \pm .003 \\ & \hline \end{aligned}$	$\begin{aligned} & -258 \\ & -259 \\ & -260 \\ & -261 \\ & -262 \end{aligned}$	$\begin{gathered} 6 \\ 61 / 4 \\ 61 / 2 \\ 63 / 4 \\ 7 \end{gathered}$	$\begin{gathered} 61 / 4 \\ 61 / 2 \\ 63 / 4 \\ 7 \\ 71 / 4 \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 5.984 \pm .035 \\ & 6.234 \pm .040 \\ & 6.484 \pm .040 \\ & 6.734 \pm .040 \\ & 6.984 \pm .040 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$

*Note: The current revision of the Standard is "C" but it changes periodically.

\%	Nominal Reference			Actual Dimensions	
	I.D.	O.D.	Width	I.D. Tol.	W. Tol.
$\begin{aligned} & -263 \\ & -264 \\ & -265 \\ & -266 \\ & -266 \end{aligned}$	$\begin{gathered} 71 / 4 \\ 71 / 2 \\ 73 / 4 \\ 8 \\ 81 / 4 \end{gathered}$	$\begin{aligned} & 71 / 2 \\ & 73 / 4 \\ & 81 / 4 \\ & 81 / 2 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$		$\begin{aligned} & .139 \pm .004 \\ & .139 . \pm 04 \\ & .139 . \pm 04 \\ & .139 . \pm 04 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -268 \\ & -269 \\ & -270 \\ & -271 \\ & -272 \end{aligned}$	$\begin{aligned} & 81 / 2 \\ & 83 / 4 \\ & 91 / 4 \\ & 91 / 4 \\ & 91 / 2 \end{aligned}$	$\begin{aligned} & 8314 \\ & 91 / 4 \\ & 91 / 4 \\ & 91 / 2 \\ & 93 / 4 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$8.484 \pm .050$ $8.984 \pm .050$ $9.484 \pm .055$	$\begin{aligned} & .139 \pm .004 \\ & .139 \pm .004 \\ & .139 \pm .004 \\ & .139 .004 \\ & .139 \pm .004 \end{aligned}$
$\begin{aligned} & -273 \\ & -274 \\ & -275 \\ & -276 \\ & -276 \\ & -277 \end{aligned}$	$\begin{gathered} 93 / 4 \\ 101 / 2 \\ 1012 \\ 1111 / 2 \end{gathered}$	$\begin{aligned} & 10 \\ & 101 / 4 \\ & 10314 \\ & 11114 \\ & 113 / 4 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \end{aligned}$	$9.734 \pm .055$ $9.984 \pm .055$ $10.484 \pm .055$ $11.484 \pm .065$	$\begin{aligned} & .139 \pm .004 \\ & 139 \pm .004 \\ & .139 \pm .004 \\ & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
-278 -279 -280 -281 -282 -281	$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 121 / 4 \\ & 131 / 4 \\ & 141 / 4 \\ & 151 / 4 \\ & 161 / 4 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 18 \\ & 1 / 8 \\ & 118 \\ & 118 \end{aligned}$	$11.984 \pm .065$ $12.984 \pm .065$ $13.984 \pm .065$ $15.955 \pm .075$	$\begin{aligned} & .139 \pm .000 \\ & 1399 \pm .004 \\ & .139 \pm .004 \\ & .139 \pm .004 \\ & .139 \pm .004 \end{aligned}$
-283 -284 -309 -310 -311 -311	$\begin{aligned} & 17 \\ & 18 \\ & 7116 \\ & 1 / 2 \\ & 9 / 16 \end{aligned}$	$\begin{aligned} & 1711 / 4 \\ & 1814 \\ & 13116 \\ & 778 \\ & 15116 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \\ & 3 / 166 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 16.955 \pm .080 \\ & 17.95 \pm .085 \\ & .412 \pm .005 \\ & .45 \pm .005 \\ & .537 \pm .007 \end{aligned}$	$\begin{aligned} & .139 \pm .004 \\ & .139 . .004 \\ & .210 \pm .005 \\ & .210 . .005 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -312 \\ & -313 \\ & -314 \\ & -314 \\ & -315 \\ & -316 \end{aligned}$	$\begin{gathered} 5 / 8 \\ 11116 \\ 131 \\ 13116 \\ 178 \end{gathered}$	$\begin{gathered} 1 \\ 11116 \\ 11 / 8 \\ 13 / 16 \\ 11 / 4 \end{gathered}$	$\begin{aligned} & 3 / 16 \\ & 3 / 166 \\ & 3 / 16 \\ & 3 / 166 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & .600 \pm .009 \\ & .662 \pm .009 \\ & .725 \pm .010 \\ & .787+.010 \\ & .850 \pm .010 \end{aligned}$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -317 \\ & -318 \\ & -319 \\ & -320 \\ & -321 \end{aligned}$	$\begin{aligned} & 15111 \\ & 11 / 116 \\ & 11 / 8 \\ & 1316 \end{aligned}$	$\begin{aligned} & 15 / 16 \\ & 136 \\ & 17716 \\ & 1112 \\ & 19116 \end{aligned}$	$\begin{aligned} & 3116 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$.912 \pm .010$ $1.037 \pm .010$ $1.162 \pm .012$	$\begin{aligned} & .210 \pm .005 \\ & .210 . .05 \\ & .2100 . .005 \\ & .210 . .005 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -322 \\ & -323 \\ & -324 \\ & -325 \\ & -326 \\ & -326 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 15 / 16 \\ & 13 / 8 \\ & 111 / 2 \\ & 15 / 8 \end{aligned}$	$\begin{gathered} 15 / 8 \\ 111 / 16 \\ 13 / 4 \\ 17 / 8 \\ 2 \end{gathered}$	$\begin{aligned} & 316 \\ & 316 \\ & 316 \\ & 316 \\ & 3 / 16 \end{aligned}$		$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .005 \\ & .210 \pm .005 \\ & .210 \pm .050 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -327 \\ & -328 \\ & -329 \\ & -330 \\ & -331 \\ & \hline 331 \end{aligned}$	$\begin{aligned} & 13 / 4 \\ & 17 / 8 \\ & 2 \\ & 21 / 8 \\ & 21 / 4 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1 / 8 \\ 21 / 4 \\ 23 / 8 \\ 21 / 2 \\ 25 / 8 \end{array} \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 1.725 \pm .015 \\ & 1.85 \pm \pm .015 \\ & 1.975 \pm .018 \\ & 2.1 .00 \pm .018 \\ & 2.225 \pm .018 \end{aligned}$	$\begin{aligned} & .210 \pm .005 \\ & .210 . \pm 05 \\ & .210 . \pm 05 \\ & .120 . \pm 05 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -332 \\ & -333 \\ & -34 \\ & -354 \\ & -336 \\ & -356 \end{aligned}$	$\begin{aligned} & 23 / 8 \\ & 21 / 2 \\ & 25 / 8 \\ & 23 / 4 \\ & 27 / 4 \end{aligned}$	$\begin{gathered} 2314 \\ 2718 \\ 31 / 8 \\ 31 / 8 \\ 31 / 4 \end{gathered}$	$\begin{aligned} & 3 / 16 \\ & 3 / 166 \\ & 3 / 16 \\ & 3 / 166 \\ & 3 / 16 \end{aligned}$	$2.350 \pm .018$ $2.600 \pm .020$ $2.850 \pm .02$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -337 \\ & -338 \\ & -339 \\ & -340 \\ & -341 \end{aligned}$	$\begin{gathered} 3 \\ 31 / 8 \\ 31 / 4 \\ 33 / 8 \\ 31 / 2 \end{gathered}$	$\begin{aligned} & \begin{array}{l} 3 \\ 31 / 2 \\ 31 / 2 \\ 35 / 8 \\ 33 / 4 \\ 37 / 8 \end{array} \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$		$\begin{aligned} & .210 \pm .005 \\ & .210 . .05 \\ & .2100 . .005 \\ & .210 . .005 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -342 \\ & -343 \\ & -344 \\ & -345 \\ & -346 \\ & -346 \end{aligned}$	$\begin{aligned} & 35 / 8 \\ & 33 / 4 \\ & 37 / 8 \\ & 4 \\ & 41 / 8 \end{aligned}$	$\begin{gathered} 4 \\ 41 / 8 \\ 41 / 4 \\ 43 / 8 \\ 41 / 2 \end{gathered}$	$\begin{aligned} & 3116 \\ & 316 \\ & 3116 \\ & 316 \\ & 3 / 16 \end{aligned}$	$3.600 \pm .028$ $3.850 \pm .028$ $4.100 \pm .028$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .005 \\ & .210 \pm .005 \\ & .210 \pm .050 \\ & .210 \pm .005 \end{aligned}$
$\begin{array}{r} -347 \\ -348 \\ -349 \\ -350 \\ -351 \end{array}$	$\begin{aligned} & 41 / 4 \\ & 43 / 8 \\ & 41 / 2 \\ & 45 / 8 \\ & 43 / 4 \end{aligned}$	$\begin{gathered} 45 / 8 \\ 43 / 4 \\ 47 / 8 \\ 5 \\ 51 / 8 \end{gathered}$	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$4.225 \pm .030$ $4.475 \pm .030$ $4.600 \pm .030$ $4.725 \pm .030$	$\begin{aligned} & .210 \pm .005 \\ & .210 .005 \\ & .210 . \pm 05 \\ & .210 . \pm 05 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -352 \\ & -354 \\ & -354 \\ & -355 \\ & -356 \end{aligned}$	$\begin{gathered} 47 / 8 \\ 5 \\ 51 / 8 \\ 51 / 4 \\ 53 / 8 \end{gathered}$	$\begin{aligned} & 51 / 4 \\ & 5318 \\ & 51 / 2 \\ & 55 / 8 \\ & 53 / 4 \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$		$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -357 \\ & -358 \\ & -359 \\ & -360 \\ & -360 \\ & -361 \end{aligned}$	$\begin{gathered} 51 / 2 \\ 55 / 8 \\ 53 / 4 \\ 57 / 8 \\ 6 \end{gathered}$	$\begin{gathered} 57 / 8 \\ 61 / 8 \\ 61 / 8 \\ 61 / 4 \\ 63 / 8 \end{gathered}$	$\begin{aligned} & 3116 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$5.475 \pm .037$ 5 $5.725 \pm .037$ $5.850 \pm .037$ $5.975 \pm .03$	$\begin{aligned} & .210 \pm .005 \\ & .210 . .05 \\ & .2100 . .005 \\ & .210 . .005 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -362 \\ & -363 \\ & -364 \\ & -364 \\ & -365 \\ & -364 \end{aligned}$	$\begin{aligned} & 61 / 4 \\ & 661 / 2 \\ & 63 / 4 \\ & 7 \\ & 71 / 4 \end{aligned}$	$\begin{aligned} & 65 / 8 \\ & 67188 \\ & 71 / 8 \\ & 73 / 8 \\ & 75 / 8 \end{aligned}$	$\begin{aligned} & 3116 \\ & 316 \\ & 3116 \\ & 316 \\ & 3 / 16 \end{aligned}$	$6.225 \pm .040$ $6.475 \pm .040$ $6.725 \pm .040$ $6.975 \pm .040$ $7.225 \pm .045$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \end{aligned}$
-367 -368 -369 -370 -371	$\begin{gathered} 71 / 2 \\ 73 / 4 \\ 8 \\ 81 / 4 \\ 81 / 2 \end{gathered}$	$\begin{aligned} & 7718 \\ & 81 / 8 \\ & 8338 \\ & 85818 \\ & 878 \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$7.475 \pm .045$ $7.975 \pm .045$ $8.475 \pm .050$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .005 \\ & .210 . \pm 05 \\ & .210 . \pm 05 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & -372 \\ & -373 \\ & -374 \\ & -375 \\ & -376 \\ & -376 \end{aligned}$	$\begin{aligned} & 83 / 4 \\ & 9 \\ & 91 / 4 \\ & 91 / 2 \\ & 93 / 4 \end{aligned}$	$\begin{aligned} & 91 / 8 \\ & 9388 \\ & 95 / 88 \\ & 97 / 8 \\ & 101 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 8.725 \pm .050 \\ & 8.975 \pm .050 \\ & 9.225 \pm .055 \\ & 9.475 \pm .055 \\ & 9.725 \pm .055 \end{aligned}$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \\ & .210 \pm .05 \\ & .21 \pm \pm .005 \end{aligned}$
$\begin{array}{r} -377 \\ -378 \\ -379 \\ -380 \\ -381 \end{array}$	$\begin{gathered} 10 \\ 101 / 2 \\ 11 \\ 11 / 12 \\ 12 \end{gathered}$		$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3116 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$9.975 \pm .055$ $10.475+060$ $10.975 \pm .060$ $11.1 .975 \pm \pm .065$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .005 \end{aligned}$

	Nominal Reference			Actual Dimensions	
	I.D.	O.D.	Width	I.D. Tol.	W. Tol.
$\begin{aligned} & -382 \\ & -383 \\ & -384 \\ & -385 \\ & -386 \\ & -384 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 133 / 8 \\ & 143 / 8 \\ & 153 / 8 \\ & 163 / 8 \\ & 173 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \end{aligned}$	$12.975 \pm .065$ $13.975 \pm .070$ $14.975 \pm .070$ $159.95 \pm .075$ $16.955 \pm .080$	$\begin{aligned} & .210 \pm .005 \\ & .210 \pm .05 \\ & .210 \pm .05 \\ & .210 \pm .05 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} & \text {-387 } \\ & -388 \\ & -389 \\ & -390 \\ & -391 \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$	$183 / 18$ 19338 2033 $213 / 8$ $223 / 8$ 23	$\begin{aligned} & 3 / 16 \\ & 3 / 16 \\ & 3 / 16 \\ & 3 / 166 \\ & 3 / 16 \end{aligned}$		$\begin{aligned} & .210 \pm .005 \\ & .120 \pm \pm 05 \\ & .210 \pm 005 \\ & .120 \pm 005 \\ & .210 \pm .005 \end{aligned}$
$\begin{aligned} -392 \\ -393 \\ -394 \\ -395 \\ -495 \\ -45 \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 41 / 2 \end{aligned}$	$\begin{gathered} 233 / 18 \\ 24338 \\ 253 / 8 \\ 2633 \\ 5 \end{gathered}$	$\begin{aligned} & 3116 \\ & 316 \\ & 3 / 16 \\ & 316 \\ & 1 / 4 \end{aligned}$		$\begin{aligned} & .210 \pm .005 \\ & .210 \pm \pm 05 \\ & .210 \pm .005 \\ & .120 \pm .05 \\ & .275 \pm .006 \end{aligned}$
-426 -427 -428 -429 -430	$\begin{gathered} 45 / 8 \\ 43 / 4 \\ 47 / 8 \\ 5 \\ 51 / 8 \end{gathered}$	$\begin{aligned} & 51 / 8 \\ & 51 / 4 \\ & 53 / 8 \\ & 551 / 2 \\ & 55 / 8 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$		$\begin{aligned} & .275 \pm .006 \\ & .275 \pm .006 \end{aligned}$
-431 -432 -433 -434 -435	$\begin{aligned} & 51 / 4 \\ & 53 / 8 \\ & 51 / 2 \\ & 55 / 8 \\ & 53 / 4 \end{aligned}$	$\begin{aligned} & 5314 \\ & 57 / 8 \\ & 6 \\ & 61 / 8 \\ & 61 / 4 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$		$\begin{aligned} & .275 \pm .006 \\ & .275 \pm .006 \\ & .275 \pm \pm 06 \\ & .725 \pm .006 \\ & .275 \pm .006 \end{aligned}$
-436 -437 -438 -439 -440	$\begin{aligned} & 57818 \\ & 61 / 4 \\ & 61 / 4 \\ & 66121 \end{aligned}$	$\begin{aligned} & 6318 \\ & 61212 \\ & 63 / 4 \\ & 7 \\ & 71 / 4 \end{aligned}$	$\begin{aligned} & 114 \\ & 114 \\ & 114 \\ & 114 \\ & 114 \end{aligned}$	$\begin{aligned} & 5.850 \pm .037 \\ & 5.975 \pm .037 \\ & 6.225 \pm .040 \\ & 6.475 \pm .040 \\ & 6.725 \pm .040 \end{aligned}$	$\begin{aligned} & .275 \pm .006 \\ & .275 .+06 \\ & .275 . .006 \\ & .275 . .006 \\ & .275 \pm .006 \end{aligned}$
$\begin{aligned} & -441 \\ & -442 \\ & -443 \\ & -444 \\ & -445 \end{aligned}$	$\begin{gathered} 7 \\ 71 / 4 \\ 71 / 212 \\ 73 / 4 \\ 8 \end{gathered}$	$\begin{gathered} 71 / 2 \\ 73 / 4 \\ 8 \\ 81 / 4 \\ 81 / 2 \end{gathered}$	$\begin{aligned} & 114 \\ & 114 \\ & 1 / 4 \\ & 114 \\ & 114 \end{aligned}$	$6.975 \pm .040$ $7.475 \pm .045$ $7.975 \pm .045$	$\begin{aligned} & .275 \pm .006 \\ & .275 \pm \pm 06 \\ & .275 \pm .006 \\ & .725 \pm .006 \\ & .275 \pm .006 \end{aligned}$
-446 -447 -448 -449 -450	$\begin{gathered} 81 / 2 \\ 9 \\ 91 / 2 \\ 10 \\ 1012 \end{gathered}$	$\begin{gathered} 9 \\ 912 \\ 10 \\ 1012 \\ 11 \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 8.475 \pm .055 \\ & 8.975 \pm \pm .055 \\ & 9.475 \pm .055 \\ & 9.975 \pm .055 \\ & 10.475 \pm .060 \end{aligned}$	$\begin{aligned} & .275 \pm .006 \\ & .75 \pm \pm .060 \\ & .275 \pm \pm 006 \\ & .725 \pm .006 \\ & .275 \pm .006 \end{aligned}$
$\begin{aligned} & -451 \\ & -452 \\ & -453 \\ & -454 \\ & -455 \end{aligned}$	$\begin{gathered} 11 \\ 11 / 2 \\ 12 \\ 12 / 12 \\ 13 \end{gathered}$	$\begin{aligned} & 111 / 2 \\ & 12 \\ & 121 / 2 \\ & 13 \\ & 131 / 2 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$		$\begin{aligned} & .275 \pm .006 \\ & .275 \pm .006 \\ & .275 \pm \pm 06 \\ & .725 \pm .006 \\ & .275 \pm .006 \end{aligned}$
-456 -457 -458 -459 -460	$\begin{aligned} & 131 / 2 \\ & 14 \\ & 141 / 4 \\ & 15 \\ & 1512 \end{aligned}$	$\begin{gathered} 14 \\ 141 / 2 \\ 15 \\ 151 / 2 \\ 16 \end{gathered}$	$\begin{aligned} & 114 \\ & 1 / 4 \\ & 114 \\ & 114 \\ & 114 \end{aligned}$	$13.475 \pm .070$ $13.955 \pm .070$ $14.475 \pm .070$ $14.957 \pm .070$ $15.475 \pm .070$	$\begin{aligned} & .275 \pm .006 \\ & .275 \pm \pm 06 \\ & .275 \pm .006 \\ & .725 \pm .006 \\ & .275 \pm .006 \end{aligned}$
-461 -462 -463 -464 -465	$\begin{gathered} 16 \\ 1617 \\ 17 \\ 17 / 12 \\ 18 \end{gathered}$	$\begin{aligned} & 161 / 2 \\ & 17 \\ & 171 / 2 \\ & 18 \\ & 181 / 2 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 114 \\ & 114 \end{aligned}$		$\begin{aligned} & .275 \pm .006 \\ & .275 \pm \pm 06 \\ & .725 \pm .006 \\ & .725 \pm .06 \\ & .275 \pm .006 \end{aligned}$
-466 -467 -468 -469 -470	$\begin{aligned} & 181 / 2 \\ & 19 \\ & 191 / 2 \\ & 20 \\ & 21 \end{aligned}$	$\begin{gathered} 19 \\ 191 / 2 \\ 20 \\ 20112 \\ 211 / 2 \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 114 \\ & 1 / 4 \end{aligned}$	$18.455 \pm .085$ $19.455 \pm .090$ $20.955 \pm .090$	$\begin{aligned} & .275 \pm .006 \\ & .275 \pm .06 \\ & .275 \pm \pm 06 \\ & .725 \pm .006 \\ & .275 \pm .006 \end{aligned}$
$\begin{aligned} & -471 \\ & -472 \\ & -473 \\ & -474 \\ & -475 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 221 / 12 \\ & 231 / 2 \\ & 241 / 2 \\ & 251 / 2 \\ & 261 / 2 \end{aligned}$	$\begin{aligned} & 114 \\ & 1 / 4 \\ & 1 / 4 \\ & 114 \\ & 1 / 4 \end{aligned}$		$\begin{aligned} & .275 \pm .006 \\ & .275+.006 \\ & \hline 275+.006 \\ & .2755 . .006 \\ & .275 \pm .006 \end{aligned}$

Standard O-Ring Boss Gaskets For Straight
Thread Tube Fittings

	Tube Size (O.D.) Fractional	Actual Dimensions	
		I.D. Tol.	W. Tol.
$\begin{aligned} & -901 \\ & -902 \\ & -903 \\ & -904 \\ & -905 \end{aligned}$	$\begin{gathered} 3 / 32 \\ 1 / 8 \\ 3 / 16 \\ 1 / 4 \\ 5 / 16 \end{gathered}$	$\begin{aligned} & .185 \pm .005 \\ & .239 \pm .005 \\ & .301 \pm .005 \\ & .351 \pm .005 \\ & .414 \pm .005 \end{aligned}$	$\begin{aligned} & .056 \pm .003 \\ & .064 \pm .003 \\ & .064 \pm .003 \\ & .072 \pm .003 \\ & .072 \pm .003 \end{aligned}$
$\begin{aligned} & -906 \\ & -907 \\ & -908 \\ & -909 \\ & -910 \end{aligned}$	$\begin{aligned} & 3 / 8 \\ & 7 / 16 \\ & 1 / 2 \\ & 9 / 16 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & .468 \pm .005 \\ & .530 \pm .007 \\ & .644 \pm .009 \\ & .706 \pm .009 \\ & .755 \pm .009 \end{aligned}$	$\begin{aligned} & .078 \pm .003 \\ & .082 \pm .003 \\ & .087 \pm .003 \\ & .097 \pm .003 \\ & .097 \pm .003 \end{aligned}$
$\begin{aligned} & -911 \\ & -911 \\ & -913 \\ & -914 \\ & -916 \end{aligned}$	$\begin{gathered} 11 / 16 \\ 3 / 4 \\ 13 / 16 \\ 7 / 8 \\ 1 \end{gathered}$	$\begin{array}{r} .863 \pm .009 \\ .924 \pm .009 \\ .986 \pm .010 \\ 1.047 \pm .010 \\ 1.171 \pm .010 \end{array}$	$\begin{aligned} & .116 \pm .004 \\ & .116 \pm .004 \end{aligned}$
$\begin{aligned} & -918 \\ & -920 \\ & -924 \\ & -928 \\ & -922 \end{aligned}$	$\begin{gathered} 11 / 8 \\ 11 / 4 \\ 11 / 2 \\ 13 / 4 \\ 2 \end{gathered}$	$\begin{aligned} & 1.355 \pm .012 \\ & 1.475 \pm .014 \\ & 1.720 \pm .014 \\ & 2.090 \pm .018 \\ & 2.337 \pm .018 \\ & \hline \end{aligned}$	$\begin{aligned} & .116 \pm .004 \\ & .118 \pm .004 \\ & \hline \end{aligned}$

*Note: The current revision of the Standard is "C" but it changes periodically.

More from Munaco.

Cut Gaskets

- Die and Precision CNC Cut
- Standard Flanges
- Boiler, Chiller, \& Manhole
- Custom Configurations
-Long and Short Runs
- Prototyping
- Fast Dellivery

Metal Gaskets
- Complete Line of Flexitallic Gaskets Including Semi-Metallic Spiral Wounds, MRG, Flexpro, HOT, CGU-MRG, \& Baker
- Low-Stress
- Cnange Gasket
- Ring Joints-Oval, Octagonal, \& BX
- Jacketed \& Corrugated

Metal Seals

- E, C, O, V, \& U Seals
- Spring-Energized Seals
- Materials Include Aluminum, Copper, Inconel, Mild Steel, Nickel,
Silver, Stainless, \& Titanium
- Helicoflex ${ }^{\text {na }}$ Seals
- Piston Rings, Seal Rings
- Bellows

Roll and Sheet Materials

- Beater-Add
- Fiberglass
- Flexible Graphite
- GORE*
- Gylor ${ }^{\text {* }}$
- IFG $^{\oplus} 5500$
- Multi-Swelliw 3760
- Mil Specifications
- Neoprene
- PTFE-Virgin \& Filled
- Pure Gum
- Red Rubber
- Rubber Sponge-Open
\& Closed Cell
- Sigma ${ }^{\text {a }}$
- Slilicone Rubber \& Sponge
-Soft-Chem ${ }^{\text { }}$
- Supranite
- Thermiculite ${ }^{\text {e }}$
- Vegetable Fiber
- Viton ${ }^{\text {® }}$ Rubber \& Sponge

Extrusions

- Materials Include Buna-N, EPDM, Gum Rubber, Neoprene, Silicone, Urethane, \& Viton ${ }^{*}$
- Various Profiles Including Triangle, Channel, Rectangle, Round, \& Tube
- Custom Profiles

Filters

- Medium, High, \& Super High Efficiency
- Turbine Cartridges

Expansion Joints

- Elastomeric, Flue Duct, \& Flexible Pipe
- Bellows

High Temperature Woven Products

- Blankets, Cloth, Gaskets, Rope-Knitted \&

Twisted, Tadpole, Tape, \& Tubing

- Ceramic, Fiberglass, inconel", Keviare, Stainless*
- PTFE, Silicone, Vermiculite Coatings

Safety Products

- Anti-Fatigue, Anti-Slip, \& Switchboard Matting
- Lockout/Tagout, Safoty Identification, \& Signage

Hose, Tubing and Fittings

- Hose for Air, Chemical, Discharge, Duct, Food, Material Handling, Petroleum, Plastic, Steam, Suction, Washdown, \& Water Applications
- Tubing Materials Include Nylon, PE, PVC, Rubber, \& Silicone
- Complete Line of Brass \& Stainless Tube Fittings, Gauges, RFL Units, Valves, \& Accessories
- Sanitary - Fittings, Gaskets, Valves

Molded Parts

- Bellows - Boots
- Bumpers - Bushings
- Klozurg* \& Snaft Seals - Gaskets
- V-Packing (Chevron) - V-Rings
- Grommets - Rod \& Way Covers

Accessories and Hardware

" Adhesives	- Belting
- Bearing Pads	- Bushings
- Fuel Nozzle Parts	- Isolators
- Lubricants	- Nameplates
- Shims	- Snap Rings
- Springs	- Tubing Kits

Pump and Valve Packing

- Aramid \quad GFO*
- Keviar \quad Carbon
- Graphite - Inconel
-Synthetic -Teflon*
- Packing Sets \quad Thermiculite ${ }^{\circ}$

O, Quad, Encapsulated, Back-up Rings, Cord and Kits

- Butyl	- EPDM	- Gum	- Kalrez ${ }^{\text {e }}$	- Neoprene	- Nitrile	- FDA, Mil-Spec, NSF 51/61
- Sillicone	- Sponge	- Teflon ${ }^{\text {® }}$	- Viton ${ }^{\text {® }}$	- AFLAS ${ }^{\text {e }}$	- Chemraz*	- Custom Sizes

